Show Tag: somatosensory

Select Other Tags

SIV neurons are excited almost exclusively by somatosensory stimuli.

SIV neurons' activity can be inhibited by activity in the auditory FAES.

The function of SIV is unknown.

Dehner et al. speculate that the inhibitory influence of FAES activity on SIV activity is connected to modality-specific attention: According to that hypothesis, an auditory stimulus which leads to strong FAES activity will suppress activity in FAES and thus block out cortical somatosensory input to the SC.

There's a topographic map of somatosensory space in the putamen.

There are visuo-somatosensory neurons in the putamen.

Graziano and Gross found visuo-somatosensory neurons in those regions of the putamen which code for arms and the face in somatosensory space.

Visuo-somatosensory neurons in the putamen with somatosensory RFs in the face are very selective: They seem to respond to visual stimuli consistent with an upcoming somatosensory stimulus (close-by objects approaching to the somatosensory RFs of the neurons).

Graziano and Gross report on visuo-somatosensory cells in the putamen in which remapping seems to be happening: Those cells responded to visual stimuli only when the animal could see the arm in which the somatosensory RF of those cells was located.

SIV is somatotopically organized.

There are projections from primary somatosensory cortex to SC.

Primary somatosensory cortex is somatotopic.

SC receives tactile localization-related inputs from the trigeminal nucleus.

SC receives input and represents all sensory modalities used in phasic orienting: vision, audition, somesthesis (haptic), nociceptic, infrared, electoceptive, magnetic, and ecolocation.

Ideal observer models of cue integration were introduced in vision research but are now used in other uni-sensory tasks (auditory, somatosensory, proprioceptive and vestibular).

The SC is multisensory: it reacts to visual, auditory, and somatosensory stimuli. It does not only initiate gaze shifts, but also other motor behaviour.

The deeper levels of SC are the targets of projections from cortex, auditory, somatosensory and motor systems in the brain.

Moving the eyes shifts the auditory and somatosensory maps in the SC.

(Some) SC neurons in the newborn cat are sensitive to tactile stimuli at birth, to auditory stimuli a few days postnatally, and to visual stimuli last.

We do not know whether other sensory maps than the visual map in the SC are initially set up through chemical markers, but it is likely.

If deep SC neurons are sensitive to tactile stimuli before there are any visually sensitive neurons, then it makes sense that their retinotopic organization be guided by chemical markers.

Moving eyes, ears, or body changes the receptive field (in external space) in SC neurons wrt. stimuli in the respective modality.

Most of the multi-sensory neurons in the (cat) SC are audio-visual followed by visual-somatosensory, but all other combinations can be found.

One reason for specifically studying multi-sensory integration in the (cat) SC is that there is a well-understood connection between input stimuli and overt behavior.

Pitti et al. use a Hebbian learning algorithm to learn somato-visual register.

Pitti et al. claim that their model explains preference for face-like visual stimuli and that their model can help explain imitation in newborns. According to their model, the SC would develop face detection through somato-visual integration.