Show Reference: "A self-organizing map of sigma–pi units"

A self-organizing map of sigma–pi units Neurocomputing, Vol. 70, No. 13-15. (August 2007), pp. 2552-2560, doi:10.1016/j.neucom.2006.05.014 by Cornelius Weber, Stefan Wermter
    abstract = {By frame of reference transformations, an input variable in one coordinate system is transformed into an output variable in a different coordinate system depending on another input variable. If the variables are represented as neural population codes, then a sigma–pi network is a natural way of coding this transformation. By multiplying two inputs it detects coactivations of input units, and by summing over the multiplied inputs, one output unit can respond invariantly to different combinations of coactivated input units. Here, we present a sigma–pi network and a learning algorithm by which the output representation self-organizes to form a topographic map. This network solves the frame of reference transformation problem by unsupervised learning.},
    address = {Amsterdam, The Netherlands, The Netherlands},
    author = {Weber, Cornelius and Wermter, Stefan},
    doi = {10.1016/j.neucom.2006.05.014},
    issn = {09252312},
    journal = {Neurocomputing},
    keywords = {learning, model, sigma-pi, som, unsupervised-learning},
    month = aug,
    number = {13-15},
    pages = {2552--2560},
    posted-at = {2012-07-05 16:26:45},
    priority = {2},
    publisher = {Elsevier Science Publishers B. V.},
    title = {A self-organizing map of sigma–pi units},
    url = {},
    volume = {70},
    year = {2007}

See the CiteULike entry for more info, PDF links, BibTex etc.