Show Reference: "Spiking Neuron Networks: A Survey"

Spiking Neuron Networks: A Survey In IDIAP-RR 11 (2006) by Hélène Paugam-Moisy
@inproceedings{paugam-moissy-2006,
    abstract = {Abstract. Spiking Neuron Networks ({SNNs}) are often referred to as the 3 rd generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. {SNNs} overcome the computational power of neural networks made of threshold or sigmoidal units. Based on dynamic event-driven processing, they open up new horizons for developping models with an exponential capacity of memorizing and a strong ability to fast adaptation. Today, the main challenge is to discover efficient learning rules that might take advantage of the specific features of {SNNs} while keeping the nice properties (general-purpose, easy-to-use, available simulators, etc.) of current connectionist models (such as {MLP}, {RBF} or {SVM}). The present survey relates the history of the  ” spiking neuron ” and summarizes the most currenlty in use models of neurons and networks, in Section 1. The computational power of {SNNs} is addressed in Section 2 and the problem of learning in networks of spiking neurons is tackled in Section 3, with insights into the tracks currently explored for solving it. Section 4 reviews the tricks of implementation and discuss several simulation frameworks. Examples of application domains are proposed in Section 5, mainly in speech processing and computer vision, emphasizing the temporal aspect of pattern recognition by {SNNs}.},
    author = {Paugam-Moisy, H\'{e}l\`{e}ne},
    booktitle = {IDIAP-RR 11},
    keywords = {ann, biology},
    posted-at = {2012-02-20 09:35:12},
    priority = {2},
    school = {IDIAP},
    title = {Spiking Neuron Networks: A Survey},
    url = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.516},
    year = {2006}
}

See the CiteULike entry for more info, PDF links, BibTex etc.