Show Reference: "Developments and Applications of Nonlinear Principal Component Analysis - a Review"

Developments and Applications of Nonlinear Principal Component Analysis – a Review Principal Manifolds for Data Visualization and Dimension Reduction In Principal Manifolds for Data Visualization and Dimension Reduction, Vol. 58 (2008), pp. 1-43, doi:10.1007/978-3-540-73750-6_1 by Uwe Kruger, Junping Zhang, Lei Xie edited by Alexander N. Gorban, Balázs Kégl, Donald C. Wunsch, Andrei Y. Zinovyev
@incollection{kruger-et-al-2008,
    abstract = {Although linear principal component analysis ({PCA}) originates from the work of Sylvester [67] and Pearson [51], the development of nonlinear counterparts has only received attention from the 1980s. Work on nonlinear {PCA}, or {NLPCA}, can be divided into the utilization of autoassociative neural networks, principal curves and manifolds, kernel approaches or the combination of these approaches. This article reviews existing algorithmic work, shows how a given data set can be examined to determine whether a conceptually more demanding {NLPCA} model is required and lists developments of {NLPCA} algorithms. Finally, the paper outlines problem areas and challenges that require future work to mature the {NLPCA} research field.},
    author = {Kruger, Uwe and Zhang, Junping and Xie, Lei},
    booktitle = {Principal Manifolds for Data Visualization and Dimension Reduction},
    citeulike-article-id = {1647435},
    citeulike-linkout-0 = {http://dx.doi.org/10.1007/978-3-540-73750-6\_1},
    citeulike-linkout-1 = {http://link.springer.com/chapter/10.1007/978-3-540-73750-6\_1},
    doi = {10.1007/978-3-540-73750-6\_1},
    editor = {Gorban, Alexander N. and K\'{e}gl, Bal\'{a}zs and Wunsch, Donald C. and Zinovyev, Andrei Y.},
    journal = {Principal Manifolds for Data Visualization and Dimension Reduction},
    keywords = {dimensionality-reduction, learning, pca, unsupervised-learning},
    pages = {1--43},
    posted-at = {2015-03-17 14:23:09},
    priority = {2},
    publisher = {Springer Berlin Heidelberg},
    series = {Lecture Notes in Computational Science and Enginee},
    title = {Developments and Applications of Nonlinear Principal Component Analysis – a Review},
    url = {http://dx.doi.org/10.1007/978-3-540-73750-6\_1},
    volume = {58},
    year = {2008}
}

See the CiteULike entry for more info, PDF links, BibTex etc.