Show Reference: "Slant from texture and disparity cues: Optimal cue combination"

Slant from texture and disparity cues: Optimal cue combination Journal of Vision, Vol. 4, No. 12. (01 December 2004), pp. 967-992, doi:10.1167/4.12.1 by James M. Hillis, Simon J. Watt, Michael S. Landy, Martin S. Banks
    abstract = {How does the visual system combine information from different depth cues to estimate three-dimensional scene parameters? We tested a maximum-likelihood estimation ({MLE}) model of cue combination for perspective (texture) and binocular disparity cues to surface slant. By factoring the reliability of each cue into the combination process, {MLE} provides more reliable estimates of slant than would be available from either cue alone. We measured the reliability of each cue in isolation across a range of slants and distances using a slant-discrimination task. The reliability of the texture cue increases as |slant| increases and does not change with distance. The reliability of the disparity cue decreases as distance increases and varies with slant in a way that also depends on viewing distance. The trends in the single-cue data can be understood in terms of the information available in the retinal images and issues related to solving the binocular correspondence problem. To test the {MLE} model, we measured perceived slant of two-cue stimuli when disparity and texture were in conflict and the reliability of slant estimation when both cues were available. Results from the two-cue study indicate, consistent with the {MLE} model, that observers weight each cue according to its relative reliability: Disparity weight decreased as distance and |slant| increased. We also observed the expected improvement in slant estimation when both cues were available. With few discrepancies, our data indicate that observers combine cues in a statistically optimal fashion and thereby reduce the variance of slant estimates below that which could be achieved from either cue alone. These results are consistent with other studies that quantitatively examined the {MLE} model of cue combination. Thus, there is a growing empirical consensus that {MLE} provides a good quantitative account of cue combination and that sensory information is used in a manner that maximizes the precision of perceptual estimates.},
    address = {Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.},
    author = {Hillis, James M. and Watt, Simon J. and Landy, Michael S. and Banks, Martin S.},
    day = {01},
    doi = {10.1167/4.12.1},
    issn = {1534-7362},
    journal = {Journal of Vision},
    keywords = {bayes, cue-combination, mle, visual-processing},
    month = dec,
    number = {12},
    pages = {967--992},
    pmid = {15669906},
    posted-at = {2013-05-23 21:15:54},
    priority = {2},
    publisher = {Association for Research in Vision and Ophthalmology},
    title = {Slant from texture and disparity cues: Optimal cue combination},
    url = {},
    volume = {4},
    year = {2004}

See the CiteULike entry for more info, PDF links, BibTex etc.

Human performance in combining slant and disparity cues for slant estimation can be explained by (optimal) maximum-likelihood estimation.