Show Reference: "The Analysis of Visual Motion: a Comparison of Neuronal and Psychophysical Performance"

The Analysis of Visual Motion: a Comparison of Neuronal and Psychophysical Performance The Journal of Neuroscience, Vol. 12, No. 12. (1 December 1992), pp. 4745-4765 by Kenneth H. Britten, Michael N. Shadlen, William T. Newsome, J. Anthony Movshon
@article{britten-et-al-1992,
    abstract = {We compared the ability of psychophysical observers and single cortical neurons to discriminate weak motion signals in a stochastic visual display. All data were obtained from rhesus monkeys trained to perform a direction discrimination task near psychophysical threshold. The conditions for such a comparison were ideal in that both psychophysical and physiological data were obtained in the same animals, on the same sets of trials, and using the same visual display. In addition, the psychophysical task was tailored in each experiment to the physiological properties of the neuron under study; the visual display was matched to each neuron's preference for size, speed, and direction of motion. Under these conditions, the sensitivity of most {MT} neurons was very similar to the psychophysical sensitivity of the animal observers. In fact, the responses of single neurons typically provided a satisfactory account of both absolute psychophysical threshold and the shape of the psychometric function relating performance to the strength of the motion signal. Thus, psychophysical decisions in our task are likely to be based upon a relatively small number of neural signals. These signals could be carried by a small number of neurons if the responses of the pooled neurons are statistically independent. Alternatively, the signals may be carried by a much larger pool of neurons if their responses are partially intercorrelated.},
    address = {Department of Neurobiology, Stanford University School of Medicine, California 94305.},
    author = {Britten, Kenneth H. and Shadlen, Michael N. and Newsome, William T. and Movshon, J. Anthony},
    day = {1},
    issn = {0270-6474},
    journal = {The Journal of Neuroscience},
    keywords = {biology, motion, visual, visual-processing},
    month = dec,
    number = {12},
    pages = {4745--4765},
    pmid = {1464765},
    posted-at = {2013-02-22 08:48:56},
    priority = {2},
    title = {The Analysis of Visual Motion: a Comparison of Neuronal and Psychophysical Performance},
    url = {http://www.jneurosci.org/content/12/12/4745.abstract},
    volume = {12},
    year = {1992}
}

See the CiteULike entry for more info, PDF links, BibTex etc.

Trigger feature hypothesis: early hypothesis on neural coding. One perceptual feature triggers activity in one neuron.

The trigger feature hypothesis in principle postulates combinatorial codes (or even sparse coding).

Neural codes with overlapping receptive fields are less likely to be corrupted by noise than codes in which each neuron codes for only one value.